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1.0 Introduction 

This project was started in July 2010 to investigate the optical properties of metallic two 

dimensional hole arrays (2DHA) and their coupling to intersubband transitions of solid state 

quantum dots (QD) for improved infrared sensing.  The project envisaged 1) An improved 

understanding of the optical properties of metallic 2DHA in relation to coupling with quantum 

dots. 2) Improved design of integrated 2DHA-QD structures 3) Enhanced performance and 

functionality of infrared sensors, specifically in the 3-12 µm region. This was executed in close 

collaboration with  Air Force Research Laboratory (AFRL), Albuquerque NM, for theoretical 

and strategic support and University of New Mexico, NM for growth of the detector material.  

 

2.0 Relevance of this Project 

The optical properties of metallic nanostructures have attracted a lot of attention in the past 

decade. The ability of these structures to provide extraordinary enhanced transmission (EOT) 

due to the coupling of incident light with plasmonic and surface modes has been studied in 

detail.  The ability of these structures to confine and concentrate light beyond diffractive limits 

provides new opportunities for improved sensitivity, integration and enhanced functionality of 

devices.  

 The infrared region (3-12 µm) of the spectrum is of strategic importance due to its applications 

in remote sensing, night vision and defense. Present day sensors in this region use bulk materials 

like mercury cadmium telluride (MCT) and InSb. The presence of large dark current in these 

materials necessitate cooling of the sensor to liquid nitrogen temperatures. The separation of 

different spectral bands is achieved by use of external optics, as the sensors themselves are 

broadband and differentiate different regions based on intensity only.  The integration of metallic 

nanostructures with infrared sensors can provide a paradigm shift in infrared sensing with respect 

to both performance and functionality.  Using a strong 2DHA-QD interaction can intraband 

transition rate can be enhanced by order-of-magnitude and, hence, the infrared detectivity. The 

resonant nature of plasmonic-QD interaction can be used to provide improved sensitivity in 

specific bands, while suppressing sensing in other regions of the spectrum. The ability to 

integrate these structures with current architectures of detector arrays can provide a cost effective 

method of multispectral sensing.  

 

3.0 Technical Progress Summary 

This project has yielded major breakthroughs in understanding the interaction of periodic 

metallic hole arrays with incident IR radiation and coupling it to infrared absorbing materials in 

its viscinity. Remarkable progress has been achieved in fabrication and characterization of 

sensors, including novel methods to accurately measure and characterize the interaction of 

2DHAs with quantum dots.  

 Some of the major accomplishments of this project are  

•   A successful micro-fabrication process development for integrated 2D hole-array 

(2DHA) – QD structure : A process was process for integration of 2D hole arrays with a 

QD infrared detectors. The structure has been designed to enable reliable field coupling 

from incident radiation to 2D hole arrays, and for accurate electrical measurements. It 
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also eliminates spurious substrate and edge coupling, improving the accuracy of 

measurements. Etching processes for isolating pixels, electrical passivation and 

metallization processes have been developed. 

• Setting of a fast and reliable infrared test set-up: A new Fourier transform infrared 

spectrometer (FTIR) based test setup has been established at RPI. The setup is able to test 

multiple samples for temperatures from 4-300 K. The FTIR based systems allows for 

quick turnaround of multiple samples, and enables characterization with a better 

resolution in bias and temperature. 

• Demonstration of over an order of maginitude enhancement in infrared detection: 

Using the improved design and test setups we have showed over a factor of 20 

improvement in detectivity of QD based IR detectors. This remarkable result, 

demonstrated in IR detectors for the first time, has been demonstrated for multiple 

wavelengths. The fundamental nature of the plasmonic coupling and IR detection 

enhancement makes it possible to extend this enhancement for the entire IR detection 

range of 3-14 µm.  

• Discovery of quantum dot anisotropy effects contributing to enhanced detection: 

Our experiments using QD based detectors have thrown light into the fundamental 

mechanisms governing IR enhancement. Specifically for QDs, we have shown for the 

first time, the effect of QD shape anisotropy on absorption enhancement. The QD shapes, 

evolving from the self-assembly growth process, contribute a factor of 4 towards the IR 

enhancement. Integration of 2DHA exploits the QD shape anisotropy by directing the 

field towards higher absorption polarizations.  

• Understanding and control of basic mechanisms governing plasmon-QD coupling: 

The shape and pitch of 2D hole arrays play a prominent role in determining the amount of 

light coupled, its peak wavelength and the linewidth: The resonant wavelength is a strong 

function of the 2DHA pitch and this offers methods to control the peak wavelength. 2) 

The amount of transmission and the life of the field coupling is a strong function of the 

2DHA shape and filling fraction. The control over this process allows us to determine the 

bandwidth of detection, a quality extremely useful for multi and hyperspectral detection.  

• Operation of Plasmon-QD structure near the strong coupling regime: The integrated 

devices operate near the strong coupling regime for Plasmon-QD systems. We have 

observed a broadening of spectrum, with a 7 meV peak separation for T<50 K. This is an 

indication towards the presence of dressed Plasmon-QD states in the integrated device. 

With further improvements in the QD design, the nature of the dressed states and its 

dispersion can be measured. 
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Figure 1) Optimizing 2 D hole array for desired wavelength and transmission. (a) Change 

of transmission enhancement with varying pitch ‘a’. Inset: SEM image of a fabricated 

hexagonal 2DHA; the diameter d and pitch a are indicated. The resonant transmission peak 

scales linearly with pitch of the hexagonal array. (b) Effect of hole diameter ‘d’ and 

correspondingly filling fraction of 2DHA on transmission enhancement.  

4.0 Detailed Progress 

4.1 Fabrication and Characterization of Metallic Hole Arrays 

Processes were developed for fabrication of metallic 2DHAs covering the entire 3-12 µm region. 

A hexagonal lattice with circular holes was chosen, and the effects of varying the lattice 

parameters, viz. pitch  ‘a’ and  hole diameter ‘d’ were studied. The 2DHA were manufactured 

through a photolithography process involving the use of a 5X reduction stepper. This ensured a 

good reliability and wafer scale production for the process.  

Figure 1 (a) shows the optical transmission enhancement measured for arrays with 

varying pitches from a= 2.8 µm to 3.2 µm.  The resonant peak of transmission for a hexagonal 

lattice is approximately described by the expression   

               
dm

dm

22

sp

)jij(i
3

4

a
j)(i,

εε

εε
λ

+
++

=                            (1) 

where ‘a’ is the pitch, i, j the order of resonance, and m, d subscripts denote the metal and 

semiconductor respectively. Under this resonant condition the electric field is both spectrally and 

spatially localized providing both wavelength selectivity and strong field enhancement. A 

scanning electron microscope (SEM) image of the fabricated 2DHA array on a GaAs substrate is 

shown in the inset of Figure 1 (a).  Use of metallic 2DHA provides another dimension of control 

to the transmission enhancement through varying the hole diameter. As observed in Fig. 1 (b) the 

bandwidth and transmission through the 2DHA increases with the hole diameter.  
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4.2 Growth of QD material 

The detector material consisted of InAs QDs embedded in InGaAs/GaAs wells. The detector 

material thickness and absorption were optimized to provide maximum interaction with the 

2DHA. Modeling performed for the interaction of 2DHA-QD system indicated the presence of 

large enhancements for thin active region materials. The growth of this material was undertaken 

in collaboration with the research group of Dr. Sanjay Krishna at University of New Mexico. 

This strong collaboration resulted in the optimization of detector properties for (1) Improved 

bare QD absorption and electron collection (2) low detector dark current and (3) low QD layer 

thickness.  The key is to engineer electronic states in the QD and the quantum well (QW) 

enclosing it for optimizing both photon absorption and electron collection.  This is achieved by 

varying the QW thickness surrounding the QD, so that the transitions responsible for IR 

detection are of a bound to quasi-continuum (B-QC) nature, rather than a bound to continuum 

(B-C) or bound to bound (B-B). 

 

 

 

 

 

4.2 Device Processing and Integration of 2DHA 

Processing techniques were developed for fabricating individual detector pixels from the active 

region and for integration of Au based metallic 2DHA on the detector top surface. . A new design 

of the device layout with a reflective ground plane was developed to limit this scattering and 

ensure better coupling of the incident light to the active region through the 2DHA. Several test 

devices were fabricated and measured to ensure that the incident light couples to QDs through the 

2DHA only. The processed developed involve compatibility with the current detector and focal 

plane array fabrication technology, and as a result metallic hole arrays can be integrated with 

existing designs with minimal changes to processing steps.  
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Figure 2 (a) Simulated absorptance of 2DHA-QD (red) and QD (black) layers as a function of 

QD layer thickness.  The green shaded region indicates a region of high plasmonic field.  (b) 

Plot of absorption enhancement as a function of QD layer thickness. A high enhancement is 

observed for QD layers confined to the high field region. 
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Figure 3 (a) Diagram of a QD-2DHA infrared detector.  A metallic hexagonal 2DHA is integrated 

with aperture of the QD detector.  The top contact, bottom contact and the reflective ground plane 

are indicated. b) SEM image of the integrated 2DHA. The pitch of the 2DHA was selected to 

provide response in the long-wave infrared region (LWIR). C) Peak responsivity measured from 

2DHA-QD and QD detectors using a blackbody flood illumination.   

4.3 Improved Characterization  

An improved infrared-test setup was implemented for measurement of infrared response 

from the 2DHA-QDIP infrared detectors.  This consisted of using a Fourier transform infrared 

spectrometer (FTIR) for measuring the spectral content of the detector response, as opposed to 

measurements using a monochromator. The infrared source within the FTIR is used to illuminate 

the 2DHA-QD sample cooled to 77 K in a cryostat. The detector is biased and the signal obtained 

is amplified and fed back to the FTIR through interface electronics for estimating the spectra.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 (a) Picture of the FTIR based spectral response test setup. The sample is placed inside the 

cryostat and cooled to 77 K using liquid nitrogen.  The FTIR beam is collected externally and 

focused onto the sample using a parabolic mirror and a Ge window. The signal from the detector is 

collected and fed back to the FTIR electronics through a preamp.  b) Responsivity measurement 

setup. The detector is illuminated by a calibrated blackbody source and modulated using a chopper. 

The signal from the detector is collected, amplified and fed to a network analyzer.  
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Figure 5 (a) Observed spectral response from devices with 2DHA (a=3.2 µm, 3.1 µm ) and with no 

2DHA. b) Enhancement of spectral response observed for devices integrated with 2DHA. The 

enhancement peak is a strong function of 2DHA pitch and scales linearly.  

With this setup, there are 3 major advantages over previous configurations involving 

monochromators. 1) Higher resolution- Measurements can be obtained with a better resolution 

using the FTIR, providing us with the ability to discern narrow resonances within the spectra. 2) 

Improved SNR; 3) Higher throughput.  

 

5.0 Enhanced Detector Functionality and  Performance 

5.1 Improved spectral response 

The detector structures fabricated were integrated with a series of 2DHA with varying  

parameters: the pitch ‘a’ was tuned to maximize the interaction with the QD absorption peak, and 

the  diameter ‘d’, was varied to change the transmission through the hole array. A bare QD 

infrared detector was also fabricated with the same processing steps, but without the 2DHA 

integration to measure the changes in performance accurately, while minimizing process 

variations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 a) shows the spectral response measured from the bare QD detector with no 

2DHA, and the effect of integrating 2DHA on top surface of the detector. The sample with no 

shows a wide broadband response, with peaks at 6.3 µm and 9.1 µm. Upon integrating with 

2DHA, the samples show a large enhancement of response, with over an order of magnitude 

improvement.  The enhancement is strongly confined to regions of high transmission by the 

2DHA. It is also observed that the enhancement peak is dependent on the pitch of the 2DHA 

array. As the pitch is increases from 3.1 µm to 3.2 µm the peak wavelength shifts from 8.7 µm to 
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9 µm. This has significant applications in the multispectral sensing regime where a large number 

of bands can be generated from the same detector material by controlling the 2DHA.  

 

5.2 Enhanced responsivity and Detectivity 

The  responsivity and detectivity measurements from samples with and without 2DHA are 

shown in Fig. 6 (a) and (b). The enhancement observed in the spectral response is replicated here. 

Devices with 2DHA show a peak responsivity of 1.3 A/W and a peak detectivity of 2×10
10

 

cm.Hz
0.5

/W, as opposed to detectivites of 10
9
 cm.Hz

0.5
/W for the devices with no 2DHA. With 

improvements in base QDIP material quality, higher detectivities in 10
10

 cm.Hz
0.5

/W are possible 

and in future, efforts would be made to obtain better QDIP material. The enhancements are 

observed at higher bias voltages in Fig 4 (b), as the LWIR transitions in the QD structure require a 

higher bias voltage for extraction. The maximum detectivity is obtained for -1.3 V bias. For higher 

bias voltages noise from the device starts dominating, leading to a reduction in detectivity.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.3 Role of quantum dot anisotropy:   

The large enhancement observed in absorption is a result of strong interaction between 

the plasmonic field due to the 2DHA and the quantum dots. The 2DHA-QD interaction modeled 

using finite difference time domain techniques reveal the presence of strong field at the hole 

edges for resonant wavelengths corresponding to peak of transmission.  This strong intensity 

increases the QD absorption rate. In addition, the shape asymmetry of the QD plays additional 

role in enhancing absorption. The Stranski-Krastanow growth mechanism of QDs results in a 

dome-like shape for QD. This increases confinement in growth direction, and provides higher 

absorption coefficient for radiation polarized in this direction.  

  Figure 7 (a) shows a transmission electron microscope (TEM) image of a typical 

quantum dot structure [12]. The asymmetric shape of the QD responsible for polarization 

dependent absorption can be observed.  Figure 7 (b) shows the electric field at peak transmission 
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Figure 6 (a)  Peak responsivity measured from 2DHA-QD and QD detectors using a blackbody 

flood illumination.  Pitch of the 2DHA fabricated were 3.2 µm and 3.1 µm. An order of magnitude 

enhancement is observed. (b) Observed detectivity from 2DHA-QD and QD samples.. All 

measurements were performed with f/2 optics at 77 K, using a liquid nitrogen cooled cryostat. 



 

9 

 

wavelength in a metallic 2DHA at the interface of metal and underlying semiconductor. The 

field is strongly confined to the edges of the hole creating a large intensity in these regions. This 

enhanced field is responsible for higher absorption. In Figure 7 (c) the Ez field intensity at the 

hole edge is plotted as a function of wavelength. A strong Ez component of the field is present at 

the high field region for the resonant transmission wavelength. This polarization, absent in the 

incident light is due to scattering of the incident TEM light by the 2DHA. Finally in Figure 7 (d) 

we show the contribution of shape asymmetry toward the absorption enhancement.  The 

absorption enhancement is computed for a system with no polarization dependent absorption 

(black curve) and in the presence of polarization dependent absorption. For QD system the 

enhancement factor is improved from 3 times to 7 times due to the presence of this anisotropic 

absorption.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 (a) Transmission electron microscope image of a QD structure showing the shape 

asymmetry [12].  b) Field profile at 2DHA-semiconductor interface at the fundamental resonant 

wavelength. The field is highly concentrated  at the edges of the hole. c) Ez intensity at the hole 

edge at peak transmission wavelength. A large z-field is observed at the hole edge.  d)  Effect of QD 

anisotropy on absorption enhancement.  The presence of QD anisotropy results in a higher 

absorption enhancement factor (red curve) of 7. 
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5.4 Strong plasmon-QD coupling 

The strong field enhancement produced by the 2DHA and its strong interaction with QDs 

results in the operation of the 2DHA-QD device near the strong coupling regime. At low 

temperatures (T<50 K) the system shows a splitting of peaks at the resonant peaks, providing an 

indication of a strong QD-plasmon coupling. Figure 8 shows spectral measurements at 

T=15,30,50 and 77 K and corresponding lorentzian fits. The narrow peak in resonance observed 

at 77 K broadens at lower temperatures and the fit shows the presence of two resonances. This 

points to the presence of hybrid plasmon-QD states within the system arising from the strong 

coupling phenomena. 
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Figure 8:  Temperature dependence of spectra from 2DHA-QD detectors (a)  at 15 K  (b)  at 30 K  

(a)  at 50 K (a)  at 77 K. Splitting of the resonance peak at 77 K is observed for T < 50 K.  This split 

occurs due to the operation of the device near the strong QD-Plasmon coupling regime. 

 



 

11 

 

6.0 Conclusions and Future Work 

 

This project has provided significant improvements in understanding the physics of 

plasmon-QD coupling for intersubband transitions, design of structures for improved IR 

absorption and in developing reliable and accurate characterization techniques for such devices. 

Over an order of magnitude improvement in absorption was observed in IR detectors as a result 

of plasmonic structure integration. Tunability and control of peak response wavelength were 

demonstrated by controlling 2DHA size and shape. In addition an improved understanding of the 

physics of 2DHA-QD interaction was developed, including the demonstration of QD anisotropy 

effects and operation of the device in a strong coupling regime. This technology provides a 

paradigm shift in current IR imaging technologies and promises to provide on-chip multi and 

hyperspectral imaging capabilities for IR detectors.  
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